The experimental and theoretical QTAIMC study of the atomic and molecular interactions in dinitrogen tetroxide.
نویسندگان
چکیده
The atomic and molecular interactions in a crystal of dinitrogen tetraoxide, alpha-N2O4, have been studied in terms of the quantum topological theory of molecular structure using high-resolution, low-temperature X-ray diffraction data. The experimental electron density and electrostatic potential have been reconstructed with the Hansen-Coppens multipole model. In addition, the three-dimensional periodic electron density of crystalline alpha-N2O4 has been calculated at the B3LYP/cc-pVDZ level of theory with and without the geometry optimization. The application of the quantum theory of atoms in molecules and crystals (QTAIMC) recovered the two types of intermolecular bond paths between O atoms in crystalline alpha-N2O4, one measuring 3.094, the other 3.116 A. The three-dimensional distribution of the Laplacian of the electron density around the O atoms showed that the lumps in the negative Laplacian fit the holes on the O atoms in the adjacent molecules, both atoms being linked by the intermolecular bond paths. This shows that the Lewis-type molecular complementarity contributes significantly to intermolecular bonding in crystalline N2O4. Partial overlap of atomic-like basins created by zero-flux surfaces in both the electron density and the electrostatic potential show that attractive electrostatic interaction exists between O atoms even though they carry the same net formal charge. The exchange and correlation contributions to the potential energy density were also computed by means of the model functionals, which use the experimental electron density and its derivatives. It was found that the intermolecular interactions in alpha-N2O4 are accompanied by the correlation energy-density ;bridges' lowering the local potential energy along the intermolecular O...O bond paths in the electron density, while the exchange energy density governs the shape of bounded molecules.
منابع مشابه
Theoretical Study of electronic Structure of [CoF6]3" Complex embedded in Nano-Ring
Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for Bi8N18-[CoF6]3- complexhave been carried out to study the non-bonded interaction. The geometry of the 1313N18 has been optimized atB3LYP method with EPR-II basis set and geometry of the [CoF6]3 have been optimized at B3LYP method withDe12-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electr...
متن کاملInelastic Continuum Modeling of Carbon Nanotube,s Behavior Using Finite Element Method
This paper describes a continuum model for analyzing the inelastic behavior of a single walled carbon nanotube (SWCNT) in different loading conditions. Because of limitations in using molecular dynamics (and other atomic methods) to model the failure load of the SWCNT, continuum mechanics methods are considered in this paper. Based on some experimental and theoretical results, an elasto-plastic...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملTheoretical studies on corrosion inhibition of N-aroyl-N’-aryl thiourea derivatives using conceptual DFT approach
In this paper, quantum chemical parameters at density functional theory (DFT) B3LYP/6-31G** (d,p) level of theory were calculated for three organic corrosion inhibitors [N-benzoyl-N-(p-aminophenyl) thiourea, N-benzoyl-N-(thiazole) thiourea and N-acetyl-N-(dibenzyl) thiourea. The calculated molecular descriptors such as the HOMO, LUMO, dipole moment, chemical potential (μ), chemical hardness (ղ)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section B, Structural science
دوره 65 Pt 5 شماره
صفحات -
تاریخ انتشار 2009